Introduction to Visual Basic - Session 3

Session 3

Learning objectives:

SYMBOL 183 \f "Symbol" \s 10 \h
look at human-computer interaction

SYMBOL 183 \f "Symbol" \s 10 \h
create a menu

SYMBOL 183 \f "Symbol" \s 10 \h
create a scrollbar

SYMBOL 183 \f "Symbol" \s 10 \h
create an application using several interaction objects

Exercise 1 -
Creating a menu selection
For every menu selection you must specify

A caption - If you want to enable selection by an [Alt]-keystroke combination, then type an ampersand (&) in front of the key letter. This will be underlined when displayed.

E.g.;

Captions
Display
Keystroke

&Files
Files
[Alt]-[F]

E&xit
Exit
[Alt]-[X]

A name - to identify it as a control, so that you can attach procedures to it, or set its Enabled and Visible properties from within the program.

A position - i.e. where it fits in your menu system

We will create a test menu bar which displays message boxes to show that you have obtained your selection.

The structure of the menu is:

Top Bar
Choices
Dialogue Boxes

Exit

Options
InputBoxes

Yes

Check Boxes
MsgBoxes

No

Menus
For Outputs

For Inputs

To create the menubar click Tools, Menu Editor. In the Menu Editor you should have an empty version of the window below. The cursor will be waiting in the Caption slot Type in the caption for the first menu item "&Choices" (note the ampersand before the selection letter.)

Use the mouse or the Tab key to move to the Name slot and type in a suitable control name. Press enter and you should see that the caption has been added into the list at the bottom of the window.

Type in the other options using the right and left arrow buttons in the Menu Editor window to control the indents.

Click on OK to close the Menu Design Window.

Run the program to see how your menubar works. You can add code to your controls by double clicking on them in the form design window using the 'click' procedure.

Make a frame of option boxes appear, i.e. become visible, when the option selection is made.

Experiment with making items on the menubar enabled and disabled, and visible and invisible.

Can you change the program so that once a menu item has been selected it is then disabled?

Exercise 2
Create a Scrollbar
Select a scrollbar (horizontal or vertical) from the toolbar (HScroll1) and a text box (Text1) Change the scrollbar's Max property to 10.

To pass the amount registered on the scrollbar to the text box add the procedure

Private Sub HScroll1_Change ()

text1.Text = HScroll1

End Sub

To pass the amount registered in the textbox to the scrollbar add the procedure

Private Sub Text1_Change ()

HScroll1 = Val(text1.Text)

End Sub

To start the text box input at '0' add the procedure

Private Sub Form_Load ()

text1.Text = 0

End Sub

This will set the text box value to ‘0’ on form load. Now see how it works

3.
Build a calculator program
For this program we want a form that will display an arithmetic problem and accept and check an answer. It should have a means of changing the type of problem (+,-,*,/) and the level of difficulty, and should display the score. The layout is shown below. You can see where labels have been used to display numbers as there are gaps in the dots of the form.

Controls and events:
lblNum1 and lblNum2 are labels that will hold numbers generated by the Rnd() function.

lblSumtype is a Label that holds the symbol for the sum.

txtAnswer is a TextBox - the only control into which the user can type anything. It will need code attached to its KeyPress event to check the answer when [Enter] is pressed.

The Type Frame contains four Options named optAdd, optSub, optTimes and optDiv. Code attached to their Click events will change lblSumtype’s Caption, and therefore its Value.

hsbLevel is a Horizontal Scroll Bar that sets the level of difficulty. When a new problem is generated, its value will be used to determine the scale of the numbers in expressions like:

Num1 = Int(Rnd * hsbLevel) + 1

Its limits are fixed by the Min and Max Properties which are set at design time. If the program is intended for use by young childeren the limits might be set at 5 and 10; for older users, armed with calculators, they might be 10 to 100 or more. as the value of Level is being used directly in this program, no code is needed to handle this control.

lblScore is a Label to display the current score. This will be updated by the checking routine attached to txtAnswer. To keep the score, we will need variables to count the number of goes and of correct answers. They must be set up in the general declarations.

cmdNew is a CommandButton. When clicked its code will generated a new problem and calculate the correct answer. As this value will be needed by the answer-checking routine, it must be held in a variable declared at the general level.

cmdQuit is a CommandButton. Its code could consist of no more than the word ‘End’ but would be improved by the use of a MsgBox to confirm that the user really does want to quit.

Menu Commands:
These replicate the effects of the controls on the form. Though this is unnecessary, you will often find similar situations in Windows application programs. It takes very little code to offer menu, keystroke and icon or button alternatives to activate the same command, but it does give the users the choice.

Some people like to pick their way through menus, others prefer to click on the screen. We are using menus and buttons here to give practice in both.

The menu structure is:
Menu Option

Comment

Controls

Header

New Problem
= cmdNew_Click

Type of Sum

Add
= optAdd_Click

Subtract
= optSub_Click

Times
= optTimes_Click

Divide
= optDiv_Click

Exit

Yes
= cmdQuit_Click

No
= does nothing

The Menu could well be added after the main program is up and running.

the Menu Editor will be as below.

Coding:
Much of the code flows naturally from the specification of the controls, with a little more detailed design needed for a couple of larger routines.

The following sets up the general variables in general declarations.

Dim Ans As Single

'the correct answer

Dim rtans As Integer

'right answers and

Dim qcount As Integer
 'count of questions

Set the variables as the form loads using the following.

Private Sub Form_Load()

Randomize

qcount = 0

'count of questions

rtans = 0

'score of correct answers

lblSumtype = "+"
'default type

hsbLevel = 10
'degree of difficulty

End Sub

We now add the code which is activated when we click the ‘New Sum’ button. This procedure run from cmdNew takes the following shape.

1. Generate two random numbers

2. store them in lblNum1 and lblNum2

3. Work out the correct answer, storing it in the variable Ans

4. The calculation to vary according to the character in lblSumtype

5. Clear txtAnswer and place the cursor there ready for the response.

Storing number values in Labels creates a problem when you start to calculate them. Values in Labels are of data type Variant. Visual Basic handles this intelligently, treating the values as numbers where you are obviously using them as numbers, and as strings where you are obviously using them as strings. the problem is that there is one operator, the “+” sign, which can be used with both numbers and strings!

Therefore if we want to add, we must use the Val function to make the system get the number value from the Label. Using Val on the first alone is enough to let Basic know that you want a numeric result.

The procedure becomes:

Private Sub cmdNew_Click()

lblNum1 = Int(Rnd * hsbLevel) + 1

lblNum2 = Int(Rnd * hsbLevel) + 1

Select Case lblSumtype

Case "+"

Ans = Val(lblNum1) + Val(lblNum2)

Case "-"

Ans = lblNum1 - lblNum2

 Case "*"

Ans = lblNum1 * lblNum2

Case "/"

Ans = lblNum1 / lblNum2

End Select

txtAnswer = ""

txtAnswer.SetFocus

End Sub

We can run this same code from the menu by making the menu selection call up the button’s Click event:

Private Sub NewProblem_Click()

cmdNew_Click

End Sub

Answer checking:
We want to check the answer when the user has finished. We could ask our user to click on a Check button, but it will probably be simpler for the user if we look for the [Enter] press that tells us she or he has finished. We can spot this with the KeyPress event with a KeyAscii parameter, giving the ASCII code of the last key that was pressed. [Enter] is ASCII 13.

Private Sub txtAnswer_KeyPress(KeyAscii As Integer)

If KeyAscii = 13 Then

a = Val(txtAnswer)

'get the number value

If a = Ans Then

MsgBox "Correct"

rtans = rtans + 1

Else

MsgBox "The Answer was " & Ans, 48 'with an info symbol

End If

qcount = qcount + 1

lblScore.Caption = "Score = " & rtans & " out of " & qcount

End If

End Sub

Changing the Sumtype
When the lblSumtype is changed via the Options, we can set its new value directly:

Private Sub optAdd_Click()

lblSumtype = “+”

End Sub

The other option buttons have almost identical code.

When it is changed via the Menu, we only need to set the Option. This invokes the Option’s Click event, and therefore sets the Sumtype value:

Private Sub Add_Click()

 optAdd = True

End Sub

Further Exercises
1. Add a button to your calculator program that would allow the user to reset the score - perhaps for the next user. (this system must be checked off by your practical assistant)

2. Design and write a program that could be used for the analysis of a simple questionnaire. This should only ask a single question, with a fixed set of possible answers. For example the question “What do you think of the Students Union food?” could have answers A) Excellent value for money, B) Good, C) OK, D) Poor, E) Terrible. Use a set of Options and buttons marked Next, Display Totals and Quit. When the next button is clicked, your code should scan the Options, add 1 to the appropriate total and clear the Options ready for the next response. Display Totals should produce a display of the question and the scores of the replies.

PAGE
27

